

Independence

Today, start with a cool program

 G_2

 G_1

 G_3

 G_4

 G_5

6 observations per sample

100,000 samples

Discovered Pattern

These genes don't impact T G_4 G_3

We've gotten ahead of ourselves

Start at the beginning

And vs Condition

p(AB) vs P(A|B)

P(AB) = P(A|B)P(B)

Today

Today

Probability of "OR"

OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

 $P(E \cup F) = P(E) + P(F)$

OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$

OR with Many Mutually Exclusive Events

If events are *mutually exclusive* probability of OR is easy!

What about when they are not Mutually exclusive?

OR without Mutually Exclusivity

 $P(E \cup F) = P(E) + P(F) - P(EF)$

OR without Mutually Exclusivity

More than two sets?

 $P(E \cup F \cup G) = P(E)$

$P(E \cup F \cup G) = P(E) + P(F)$

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$ -P(EF)

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$ -P(EF) - P(EG)

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$ -P(EF) - P(EG) - P(FG)

 $P(E \cup F \cup G) = P(E) + P(F) + P(G)$ -P(EF) - P(EG) - P(FG)+P(EFG)Ε 1 1 1 G

F

General Inclusion Exclusion

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{r=1}^n (-1)^{r+1} Y_r$$

$$Y_i = \text{Sum of all events on their own} \qquad \sum_{i} P(E_i)$$

$$Y_2 = \text{Sum of all pairs of events} \qquad \sum_{i,j} P(E_i \cap E_j)$$

$$s.t.i \neq j$$

$$Y_3 = \text{Sum of all triples of events} \qquad \sum_{i,j,k} P(E_i \cap E_j \cap E_k)$$

$$s.t.i \neq j, j \neq k, i \neq k$$

* Where Y_r is the sum, for all combinations of r events, of the probability of the union those events.

Today

Today

Probability of "AND"

Independence

Two events A and B are called *independent* if:

P(AB) = P(A)P(B)

Otherwise, they are called dependent events

If events are *independent* probability of AND is easy!

*You will need to use this "trick" with high probability

Intuition through proofs

Let A and B be independent $P(A|B) = \frac{P(AB)}{P(B)}$ $=\frac{P(A)P(B)}{P(B)}$ = P(A)

Definition of conditional probability

> Since A and B are independent

Taking the bus to cancel city

Knowing that event B happened, doesn't change our belief that A will happen.

Dice, Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D_1 and D_2
 - Let E be event: $D_1 = 1$
 - Let F be event: D₂ = 1
- What is P(E), P(F), and P(EF)?
 - P(E) = 1/6, P(F) = 1/6, P(EF) = 1/36
 - $P(EF) = P(E) P(F) \rightarrow E and F <u>independent</u>$
- Let G be event: $D_1 + D_2 = 5$ {(1, 4), (2, 3), (3, 2), (4, 1)}
- What is P(E), P(G), and P(EG)?
 - P(E) = 1/6, P(G) = 4/36 = 1/9, P(EG) = 1/36
 - $P(EG) \neq P(E) P(G) \rightarrow E and G <u>dependent</u>$

What does independence look like?

Independence Definition 1:

$$P(AB) = P(A)P(B)$$
$$\frac{|AF|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

Independence Definition 1: P(AB) = P(A)P(B) $\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$

Independence Definition 2: P(A|B) = P(A) $\frac{|AB|}{|B|} = \frac{|A|}{|S|}$

S

Independence Definition 1: P(AB) = P(A)P(B) $\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$

Independence Definition 2: P(A|B) = P(A) $\frac{|AB|}{|B|} = \frac{|A|}{|S|}$

Dependence

Independence Definition 1: P(AB) = P(A)P(B) $\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$

Independence Definition 2: P(A|B) = P(A) $\frac{|AB|}{|B|} = \frac{|A|}{|S|}$

More Intuition through proofs:

Given independent events A and B, prove that A and B^C are independent

We want to show that $P(AB^{c}) = P(A)P(B^{c})$

$$\begin{split} P(AB^C) &= P(A) - P(AB) & \text{By Total Law of Prob.} \\ &= P(A) - P(A)P(B) & \text{By independence} \\ &= P(A)[1 - P(B)] & \text{Factoring} \\ &= P(A)P(B^C) & \text{Since P(B) + P(B^C) = 1} \end{split}$$

So if A and B are independent A and B^C are also independent

Generalization

Generalized Independence

• General definition of Independence:

Events E_1 , E_2 , ..., E_n are independent if for every subset with r elements (where $r \le n$) it holds that:

$$P(E_{1'}E_{2'}E_{3'}...E_{r'}) = P(E_{1'})P(E_{2'})P(E_{3'})...P(E_{r'})$$

- <u>Example</u>: outcomes of *n* separate flips of a coin are all independent of one another
 - Each flip in this case is called a "trial" of the experiment

Math > Intuition

Two Dice

- Roll two 6-sided dice, yielding values D_1 and D_2
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 6$
 - Are E and F independent? Yes!
- Let G be event: $D_1 + D_2 = 7$
 - Are E and G independent? Yes!
 - P(E) = 1/6, P(G) = 1/6, P(E G) = 1/36 [roll (1, 6)]
 - Are F and G independent? Yes!
 - P(F) = 1/6, P(G) = 1/6, P(F G) = 1/36 [roll (1, 6)]
 - Are E, F and G independent? No!
 - $P(EFG) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$

New Ability

Today

Today

Use the two properties (mutual exclusion and independence)

Sending a Message Through Network

• Consider the following parallel network:

- *n* independent routers, each with probability *p_i* of functioning (where 1 ≤ *i* ≤ *n*)
- E = functional path from A to B exists. What is P(E)?

Sending a Message Through Network

• Consider the following parallel network:

- *n* independent routers, each with probability *p_i* of functioning (where 1 ≤ *i* ≤ *n*)
- E = functional path from A to B exists. What is P(E)?

Sending a Message Through Network

• Consider the following parallel network:

- *n* independent routers, each with probability *p_i* of functioning (where 1 ≤ *i* ≤ *n*)
- E = functional path from A to B exists. What is P(E)?
- Solution:
 - P(E) = 1 P(all routers fail)

=
$$1 - (1 - p_1)(1 - p_2)...(1 - p_n)$$

= $1 - \prod_{i=1}^{n} (1 - p_i)$

Coin Flips

- Say a coin comes up heads with probability p
 - Each coin flip is an independent trial
- $P(n \text{ heads on } n \text{ coin flips}) = p^n$
- P(*n* tails on *n* coin flips) = $(1 p)^n$
- P(first k heads, then n k tails) = $p^k (1-p)^{n-k}$
- Consider a particular ordering (THTHT). What is the probability of that *exact* ordering?

$$= p^3 \cdot (1-p)^2$$

Explain...

P(exactly k heads on n coin flips)?

 $\binom{n}{k} p^k (1-p)^{n-k}$

Think of the flips as ordered: Ordering 1: T, H, H, T, T, T, T... Ordering 2: H, T, H, T, T, T... And so on...

The coin flips are independent!

$$P(F_i) = p^k (1-p)^{n-k}$$

Let's make each ordering with k heads an event... F_i

P(exactly *k* heads on *n* coin flips) = P(any one of the events)

 $P(exactly k heads on n coin flips) = P(F_1 or F_2 or F_3...)$

Those events are mutually exclusive!

Today

Sets Review

• Say E and F are subsets of S

• Say E and F are events in S

S = {1, 2, 3, 4, 5, 6} die roll outcome
E = {1, 2} F = {2, 3} E ∪ F = {1, 2, 3}

• Say E and F are events in S

- S = {1, 2, 3, 4, 5, 6} die roll outcome
- E = {1, 2} F = {2, 3} E F = {2}
- Note: <u>mutually exclusive</u> events means E F = ∅

- Say E and F are events in S
 - Event that is not in E (called complement of E) E^c or ~E

S = {1, 2, 3, 4, 5, 6} die roll outcome
E = {1, 2} E^c = {3, 4, 5, 6}

Say E and F are events in S

Augustus Demorgan

Jason Alexander

- British Mathematician who wrote the book "Formal Logic" in 1847
- Celebrity lookalike is Jason Alexander from Seinfeld.

Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = at least one string hashed to first bucket
 - What is P(E)?
- Solution

To the white board

Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = at least one string hashed to first bucket
 - What is P(E)?
- Solution

To the white board

Yet More Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = At least 1 of buckets 1 to k has ≥ 1 string hashed to it
- Solution
 - F_i = at least one string hashed into *i*-th bucket
 - P(E) = P(F₁ \cup F₂ \cup ... \cup F_k) = 1 P((F₁ \cup F₂ \cup ... \cup F_k)^c) = 1 - P(F₁^c F₂^c ... F_k^c) (DeMorgan's Law)
 - $P(F_1^c F_2^c \dots F_k^c) = P(\text{no strings hashed to buckets 1 to } k)$

$$= (1 - p_1 - p_2 - \dots - p_k)^m$$

• P(E) = 1 - (1 - p_1 - p_2 - \dots - p_k)^m

No, Really, More Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = Each of buckets 1 to k has ≥ 1 string hashed to it

No, Really, More Hash Tables

No, Really, More Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = Each of buckets 1 to k has ≥ 1 string hashed to it
- Solution
 - F_i = at least one string hashed into *i*-th bucket

• P(E) = P(F₁F₂...F_k) = 1 - P((F₁F₂...F_k)^c)
= 1 - P(F₁^c
$$\cup$$
 F₂^c \cup ... \cup F_k^c) (DeMorgan's Law)
= 1 - P $\left(\bigcup_{i=1}^{k} F_{i}^{c}\right) = 1 - \sum_{r=1}^{k} (-1)^{(r+1)} \sum_{i_{1} < ... < i_{r}} P(F_{i_{1}}^{c}F_{i_{2}}^{c}...F_{i_{r}}^{c})$
where $P(F_{i_{1}}^{c}F_{i_{2}}^{c}...F_{i_{r}}^{c}) = (1 - p_{i_{1}} - p_{i_{2}} - ... - p_{i_{r}})^{m}$

It is expected that this last example will take some review!
Here we are

 G_2

 G_1

 G_3

 G_4

 G_5

6 observations per sample

100,000 samples


```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291, P(T)p(G1) = 0.195
p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213
p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117
p(T and G4) = 0.273, P(T)p(G4) = 0.273
p(T \text{ and } G5) = 0.309, P(T)p(G5) = 0.234
```

• • •


```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291, P(T)p(G1) = 0.195
p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213
n(T and G3) = 0.116, P(T)n(G3) = 0.117
p(T and G4) = 0.273, P(T)p(G4) = 0.273
p(1 and 65) = 0.309 , P(1)p(65) = 0.234
```

• • •


```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291, P(T)p(G1) = 0.195
p(T and C2) = 0.200 \quad p(T)p(C2) = 0.212
p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117
p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273
p(T \text{ and } G5) = 0.309, P(T)p(G5) = 0.234
```

• • •


```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291, P(T)p(G1) = 0.195
p(T and C2) = 0.200 \quad p(T)p(C2) = 0.212
p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117
p(T and G4) = 0.273, P(T)p(G4) = 0.273
p(1 \text{ and } G_5) = 0.309, P(1)p(G_5) = 0.234
```

• • •


```
Piech-2:dna piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291, P(T)p(G1) = 0.195
p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213
p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117
p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273
p(T \text{ and } G5) = 0.309, P(T)p(G5) = 0.234
```


Only Causal Structure that Fits

These genes don't impact T

[if I have time]

Phew!

Mutual exclusion And *Independence*

Are two properties of events that make it easy to calculate probabilities.

In the conditional paradigm, the formulas of probability are preserved.

Piech, CS106A, Stanford University

Independence relationships can change with conditioning.

If E and F are independent, that does not mean they will still be independent given another event G.

There is additional reading about this in the course reader. You will explore this more in depth in CS228

Piech, CS106A, Stanford University

Two Great Tastes

Conditional Probability

Independence

Piech, CS106A, Stanford University

Conditional Independence

 Two events E and F are called <u>conditionally</u> independent given G, if

$$P(EF|G) = P(E|G)P(F|G)$$

• Or, equivalently if:

P(E|FG) = P(E|G)

And Learn

What is the probability that a user will watch Life is Beautiful?

P(E)

 $P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\# \text{people who watched movie}}{\# \text{people on Netflix}}$

P(E) = 10,234,231 / 50,923,123 = 0.20

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

P(E|F)

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched }F}$$

$$P(E|F) = 0.42$$

Conditioned on liking a set of movies?

Each event corresponds to liking a particular movie

 E_1

 E_2

 E_3

 E_4

 $P(E_4|E_1, E_2, E_3)?$

Is E_4 independent of E_1, E_2, E_3 ?

Is E_4 independent of E_1, E_2, E_3 ?

 E_1

 E_2

 E_3

 E_4

 $P(E_4|E_1, E_2, E_3) \stackrel{?}{=} P(E_4)$

Is E_4 independent of E_1, E_2, E_3 ?

 E_1

 E_2

 E_3

 E_4

 $P(E_4|E_1, E_2, E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}$

- What is the probability that a user watched four particular movies?
 - There are 13,000 titles on Netflix
 - The user watches 30 random titles
 - E = movies watched include the given four.

 E_1

ALEREY TAUTOU MATHEE KASSOUTTZ

 E_2

 K_1 *Like foreign emotional comedies* NAIROBI HALF 3 idiots E_1 E_2 E_3 E_4

Conditional independence is a practical, real world way of decomposing hard probability questions.

Conditional Independence

If E and F are dependent,

that does not mean E and F will be dependent when another event happens.

Conditional Dependence

If E and F are independent,

that does not mean E and F will be independent when another event happens.

Big Deal

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory"

-Judea Pearl wins 2011 Turing Award, "For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

