Independence

Piech, Company, Company,

Today, start with a cool program

 G_1 G_2 G_3 G_4 G_5 G_7

6 observations per sample

100,000 samples

Discovered Pattern

 $G₄$ These genes don't impact T

We've gotten ahead of ourselves

Start at the beginning

And vs Condition

 $p(AB)$ vs $P(A|B)$

$P(AB) = P(A|B)P(B)$

Today

Today

Probability of "OR"

OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

 $P(E \cup F) = P(E) + P(F)$

OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$
P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}
$$

OR with Many Mutually Exclusive Events

If events are *mutually exclusive* probability of OR is easy!

What about when they are not *Mutually exclusive*?

OR without Mutually Exclusivity

 $P(E \cup F) = P(E) + P(F) - P(EF)$

OR without Mutually Exclusivity

More than two sets?

 $P(E \cup F \cup G) = P(E)$

$P(E \cup F \cup G) = P(E) + P(F)$

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$ $-P(EF)$

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$ $-P(EF) - P(EG)$

$P(E \cup F \cup G) = P(E) + P(F) + P(G)$ $P(EF) - P(EG) - P(FG)$

E F G 1 1 $\begin{array}{|c|c|c|}\n\hline\n1 & 1\n\end{array}$ $\begin{array}{|c|c|c|c|}\n\hline\n\textbf{1} & \textbf{1}\n\end{array}$ $P(E \cup F \cup G) = P(E) + P(F) + P(G)$ $P(EF) - P(EG) - P(FG)$ $+P(EFG)$

General Inclusion Exclusion

$$
P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{r=1}^n (-1)^{r+1} Y_r
$$

\n
$$
Y_i = \text{Sum of all events on their own}
$$
\n
$$
\sum_{i,j} P(E_i) \sum_{\text{s.t. } i \neq j} P(E_i \cap E_j)
$$
\n
$$
Y_i = \text{Sum of all triples of events}
$$
\n
$$
\sum_{i,j,k} P(E_i \cap E_j \cap E_k)
$$
\n
$$
\sum_{i,j,k} P(E_i \cap E_j \cap E_k)
$$
\n
$$
\sum_{i,j,k} P(E_i \cap E_j \cap E_k)
$$

* Where Y_r is the sum, for all combinations of r events, of the probability of the union those events.

Today

Today

Probability of "AND"

Independence

Two events A and B are called **independent** if:

$P(AB) = P(A)P(B)$

Otherwise, they are called **dependent** events

If events are *independent* probability of AND is easy!

*You will need to use this "trick" with high probability

Intuition through proofs

Let A and B be independent $P(A|B) = \frac{P(AB)}{P(B)}$ *P*(*B*) $P(A)P(D)$ $\frac{2I/L}{D/D}$ = *P*(*A*) $P(A|B) = \frac{P(B)}{P(B)}$ $P(B) = P(B)$ = *P*(*A*)*P*(*B*) *P*(*B*) $- P(A)$ *P*(*B*) $=$ $\frac{\Gamma\left(A\right)\Gamma\left(B\right)}{A}$ *P*(*B*) $= P(A)$

Definition of conditional probability

> Since A and B are independent

Taking the bus to cancel city

Knowing that event B happened, doesn't change our belief that A will happen.

Dice, Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D_1 and D_2
	- Let E be event: $D_1 = 1$
	- Let F be event: $D₂ = 1$
- What is $P(E)$, $P(F)$, and $P(EF)$?
	- $P(E) = 1/6$, $P(F) = 1/6$, $P(EF) = 1/36$
	- \rightarrow P(EF) = P(E) P(F) \rightarrow E and F *independent*
- Let G be event: $D_1 + D_2 = 5$ {(1, 4), (2, 3), (3, 2), (4, 1)}
- What is $P(E)$, $P(G)$, and $P(EG)$?
	- $P(E) = 1/6$, $P(G) = 4/36 = 1/9$, $P(EG) = 1/36$
	- P(EG) \neq P(E) P(G) \rightarrow E and G *dependent*

What does independence look like?

Independence Definition 1:

$$
P(AB) = P(A)P(B)
$$

$$
\frac{|AF|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}
$$

 $P(AB) = P(A)P(B)$ *|AB| |S|* = *|A| |S|* $\times \frac{|B|}{|S|}$ *|S|* Independence Definition 1:

Independence Definition 2: $P(A|B) = P(A)$ *|AB| |B|* = *|A| |S|*

S

 $P(AB) = P(A)P(B)$ *|AB| |S|* = *|A| |S|* $\times \frac{|B|}{|S|}$ *|S|* Independence Definition 1:

Independence Definition 2: $P(A|B) = P(A)$ *|AB| |B|* = *|A| |S|*

Dependence

 $P(AB) = P(A)P(B)$ *|AB| |S|* = *|A| |S|* $\times \frac{|B|}{|S|}$ *|S|* Independence Definition 1:

Independence Definition 2: $P(A|B) = P(A)$ *|AB| |B|* = *|A| |S|*

More Intuition through proofs:

Given independent events A and B, prove that A and B^C are independent

We want to show that $P(AB^c) = P(A)P(B^c)$

$$
P(AB^C) = P(A) - P(AB)
$$
 By Total Law of Prob.
= $P(A) - P(A)P(B)$ By independence
= $P(A)[1 - P(B)]$ Factoring
= $P(A)P(B^C)$ Since $P(B) + P(B^C) = 1$

So if A and B are independent A and B^C are also independent

Generalization

Generalized Independence

• General definition of Independence:

Events E_1 , E_2 , ..., E_n are independent if **for every subset** with r elements (where $r \le n$) it holds that:

$$
P(E_1E_2E_3...E_r) = P(E_1)P(E_2)P(E_3)...P(E_r)
$$

- Example: outcomes of *n* separate flips of a coin are all independent of one another
	- § Each flip in this case is called a "trial" of the experiment

Math > Intuition

Two Dice

- Roll two 6-sided dice, yielding values D_1 and D_2
	- Let E be event: $D_1 = 1$
	- Let F be event: $D_2 = 6$
	- Are E and F independent? Yes!
- Let G be event: $D_1 + D_2 = 7$
	- Are E and G independent? Yes!
	- $P(E) = 1/6$, $P(G) = 1/6$, $P(E \ G) = 1/36$ [roll $(1, 6)$]
	- Are F and G independent? Yes!
	- $P(F) = 1/6$, $P(G) = 1/6$, $P(F G) = 1/36$ [roll $(1, 6)$]
	- Are E, F and G independent? No!
	- P(EFG) = $1/36 \neq 1/216 = (1/6)(1/6)(1/6)$

New Ability

Today

Today

Use the two properties (mutual exclusion and independence)

Sending a Message Through Network

• Consider the following parallel network:

- *n* independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- \blacktriangleright E = functional path from A to B exists. What is P(E)?

Sending a Message Through Network

• Consider the following parallel network:

- § *n* **independent** routers, each with probability *pi* of functioning (where $1 \le i \le n$)
- \blacktriangleright E = functional path from A to B exists. What is P(E)?

Sending a Message Through Network

• Consider the following parallel network:

- *n* **independent** routers, each with probability p_i of functioning (where $1 \le i \le n$)
- \blacktriangleright E = functional path from A to B exists. What is P(E)?
- Solution:
	- $P(E) = 1 P(\text{all routers fail})$

$$
= 1 - (1 - p1)(1 - p2)...(1 - pn)
$$

= 1 -
$$
\prod_{i=1}^{n} (1 - pi)
$$

Coin Flips

- Say a coin comes up heads with probability p
	- § Each coin flip is an **independent** trial
- P(*n* heads on *n* coin flips) = p^n
- P(*n* tails on *n* coin flips) = $(1-p)^n$
- P(first *k* heads, then $n k$ tails) = $p^{k}(1-p)^{n-k}$
- Consider a particular ordering (THTHT). What is the probability of that *exact* ordering?

$$
= p^3 \cdot (1-p)^2
$$

Explain…

P(exactly *k* heads on *n* coin flips)?

 $\binom{n}{k} p^k (1-p)^{n-k}$ $\binom{n}{k} p^k (1-p)^{n-k}$ ÷ \int $\left\{ \right.$ $\overline{}$ $\overline{}$ \setminus $\binom{n}{k} p^k (1-p)$

Think of the flips as ordered: Ordering 1: T, H, H, T, T, T…. Ordering 2: H, T, H, T, T, T…. And so on…

The coin flips are independent!

$$
P(F_i) = p^k (1-p)^{n-k}
$$

Let's make each ordering with *k* heads an event… *Fi*

P(exactly *k* heads on *n* coin flips) = P(any one of the events)

 $P(exactly k heads on n coin flips) = P(F₁ or F₂ or F₃...)$

Those events are mutually exclusive!

Today

Sets Review

• Say E and F are subsets of S

• Say E and F are events in S

 \bullet S = {1, 2, 3, 4, 5, 6} die roll outcome $\textbf{E} = \{1, 2\}$ $\textbf{F} = \{2, 3\}$ $\textbf{E} \cup \textbf{F} = \{1, 2, 3\}$

• Say E and F are events in S

- \bullet S = {1, 2, 3, 4, 5, 6} die roll outcome
- $\text{E} = \{1, 2\}$ F = $\{2, 3\}$ E F = $\{2\}$
- Note: *mutually exclusive* events means $E F = \emptyset$

• Say E and F are events in S

 E^c *or* \sim **E** Event that is not in E (called complement of E)

 $S = \{1, 2, 3, 4, 5, 6\}$ die roll outcome • $E = \{1, 2\}$ $E^c = \{3, 4, 5, 6\}$

• Say E and F are events in S

Augustus Demorgan

Jason Alexander

- British Mathematician who wrote the book "Formal Logic"in 1847
- Celebrity lookalike is Jason Alexander from Seinfeld.

Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
	- § Each string hashed is an **independent** trial, with probability p*ⁱ* of getting hashed to bucket *i*
	- \blacktriangleright E = at least one string hashed to first bucket
	- What is $P(E)$?
- Solution

To the white board

Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
	- § Each string hashed is an **independent** trial, with probability p*ⁱ* of getting hashed to bucket *i*
	- E = at least one string hashed to first bucket
	- What is $P(E)$?
- Solution

To the white board

Yet More Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
	- § Each string hashed is an **independent** trial, with probability p*ⁱ* of getting hashed to bucket *i*
	- $E = At least 1 of buckets 1 to k has ≥ 1 string hashed to it$
- Solution
	- \blacksquare F_i = at least one string hashed into *i*-th bucket
	- P(E) = $P(F_1 \cup F_2 \cup ... \cup F_k) = 1 P((F_1 \cup F_2 \cup ... \cup F_k)^c)$ $= 1 - P(F_1^c F_2^c ... F_k^c)$ (DeMorgan's Law)
	- $P(F_1^c F_2^c ... F_k^c) = P(no \text{ strings hashed to buckets 1 to } k)$

-
$$
P(E)
$$
 = 1 - (1 - p₁ - p₂ - ... - p_k)^m
- $P(E)$ = 1 - (1 - p₁ - p₂ - ... - p_k)^m

= **No, Really, More Hash Tables**

- *m* strings are hashed (unequally) into a hash table with *n* buckets
	- § Each string hashed is an **independent** trial, with probability p*ⁱ* of getting hashed to bucket *i*
	- $E =$ Each of buckets 1 to *k* has \geq 1 string hashed to it

No, Really, More Hash Tables

No, Really, More Hash Tables

- *m* strings are hashed (unequally) into a hash table with *n* buckets
	- Each string hashed is an independent trial, with probability p*ⁱ* of getting hashed to bucket *i*
	- $E =$ Each of buckets 1 to *k* has \geq 1 string hashed to it
- Solution
	- \blacktriangleright F_i = at least one string hashed into *i*-th bucket

•
$$
P(E) = P(F_1F_2...F_k) = 1 - P((F_1F_2...F_k)^c)
$$

\n
$$
= 1 - P(F_1^c \cup F_2^c \cup ... \cup F_k^c) \qquad \text{(DeMorgan's Law)}
$$
\n
$$
= 1 - P\left(\bigcup_{i=1}^k F_i^c\right) = 1 - \sum_{r=1}^k (-1)^{(r+1)} \sum_{i_1 < ... < i_r} P(F_{i_1}^c F_{i_2}^c ... F_{i_r}^c)
$$
\nwhere $P(F_{i_1}^c F_{i_2}^c ... F_{i_r}^c) = (1 - p_{i_1} - p_{i_2} - ... - p_{i_r})^m$

It is expected that this last example will take some review!
Here we are

 G_1 G_2 G_3 G_4 G_5 G_7

6 observations per sample

100,000 samples


```
Piech-2:dna piech$ python findStructure.py
size data = 100000p(G1) = 0.500p(G2) = 0.545p(G3) = 0.299p(G4) = 0.701p(G5) = 0.600p(T) = 0.390p(T \text{ and } G1) = 0.291, P(T)p(G1) = 0.195p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273p(T \text{ and } G5) = 0.309, P(T)p(G5) = 0.234
```


```
Piech-2:dna piech$ python findStructure.py
size data = 100000p(G1) = 0.500p(G2) = 0.545p(G3) = 0.299p(G4) = 0.701p(G5) = 0.600p(T) = 0.390p(T \text{ and } G1) = 0.291, P(T)p(G1) = 0.195p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213p(T \text{ and } G3) = 0.116. p(T)p(G3) = 0.117p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273p(1 and 00) = 0.309, P(1)p(00) = 0.234
```


```
Piech-2:dna piech$ python findStructure.py
size data = 100000p(G1) = 0.500p(G2) = 0.545p(G3) = 0.299p(G4) = 0.701p(G5) = 0.600p(T) = 0.390p(T \text{ and } G1) = 0.291, P(T)p(G1) = 0.195n/T and C21 - Q 200 D/T1n(C2) - Q 212
p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273…<br>…
```


```
Piech-2:dna piech$ python findStructure.py
size data = 100000p(G1) = 0.500p(G2) = 0.545p(G3) = 0.299p(G4) = 0.701p(G5) = 0.600p(T) = 0.390p(T \text{ and } G1) = 0.291, P(T)p(G1) = 0.195n(T \text{ and } C2) = 0.200 D(T) n(C2) = 0.212p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273p(1 and G) = 0.309, P(1)p(G) = 0.234
```


```
Piech-2:dna piech$ python findStructure.py
size data = 100000p(G1) = 0.500p(G2) = 0.545p(G3) = 0.299p(G4) = 0.701p(G5) = 0.600p(T) = 0.390p(T \text{ and } G1) = 0.291, P(T)p(G1) = 0.195p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273…<br>…
```


Only Causal Structure that Fits

 G_4 These genes don't impact T

[if I have time]

Phew!

Mutual exclusion And *Independence*

Are two properties of events that make it easy to calculate probabilities.

In the conditional paradigm, the formulas of probability are preserved.

Piech, CS106A, Stanford University

Independence relationships can change with conditioning.

If E and F are independent, that does not mean they will still be independent given another event G.

There is additional reading about this in the course reader. You will explore this more in depth in CS228

Piech, CS106A, Stanford University

Two Great Tastes

Conditional Probability Independence

Piech, CS106A, Stanford University

Conditional Independence

• Two events E and F are called **conditionally independent given G**, if

$$
P(EF|G) = P(E|G)P(F|G)
$$

• Or, equivalently if:

 $P(E|FG) = P(E|G)$

And Learn

What is the probability that a user will watch Life is Beautiful?

P(*E*)

$$
P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflux}}
$$

 $P(E) = 10,234,231 / 50,923,123 = 0.20$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

P(*E|F*)

$$
P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched } F}
$$

 $P(E|F) = 0.42$

Conditioned on liking a set of movies?

Each event corresponds to liking a particular movie

 E_1 *E₂ E₃ E₄*

 $P(E_4|E_1, E_2, E_3)$?

Is E_4 independent of E_1,E_2,E_3 ?

Is E_4 independent of E_1,E_2,E_3 ?

 E_1 E_2 E_3 E_4

 $P(E_4|E_1, E_2, E_3) \stackrel{?}{=} P(E_4)$

Is E_4 independent of E_1,E_2,E_3 ?

 E_1 E_2 E_3 E_4

 $P(E_4|E_1, E_2, E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)}$ $P(E_1E_2E_3)$

- What is the probability that a user watched four particular movies?
	- There are 13,000 titles on Netflix
	- The user watches 30 random titles
	- \blacktriangleright E = movies watched include the given four.

 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$ $5.8 - 0 -$

Conditional independence is a practical, real world way of decomposing hard probability questions.

Conditional Independence

If E and F are dependent,

that does not mean E and F will be dependent when another event happens.

Conditional Dependence

If E and F are independent,

that does not mean E and F will be independent when another event happens.

Big Deal

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory"

-Judea Pearl wins 2011 Turing Award, *"For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"*

